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We study the generalized diffusion of a tagged particle in a one-dimensional fluid of hard-point particles.
The dynamics of a single particle in its nonuniform, nondeterministic environment is assumed known. On
eliminating suitably defined transients from the exact solution, we find a universal form for the tagged particle
dynamics when written in terms of stretched space and time, appearing as the classical telegrapher’s equation.
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I. INTRODUCTION

Single-file flow of �classically modeled� fluids in pores, a
domain of considerable importance from biological to indus-
trial physics �1,2�, has come under increasing scrutiny, both
theoretical �3–7� and experimental �8–10�, of late. The pro-
totype of self-diffusion of impenetrable point particles, on a
one-dimensional �1D� infinite line, was solved, in various
versions, many years ago �11–13�. However, going beyond
the prototype in a reliable fashion requires, at the very least,
understanding the dominant physical mechanisms in a con-
cise quantitative fashion. This in turn requires knowledge of
the response of the system to external probes that are suffi-
ciently searching. Here, we will interpret this objective by
positing a quite general single-particle stochastic dynamics,
and then asking for the consequences of our idealized very
strong interaction between the particles. By so doing, we will
hope to recognize the dominant mechanisms alluded to
above, allowing us to extrapolate from the prototype with
some degree of confidence.

The questions being asked fall under the broad classifica-
tion of few particle properties of interacting many-body sys-
tems, and hence under that of dimensional reduction. In
preparation for the in-depth analysis of fluids in highly con-
fining geometries, we have previously examined the diffu-
sion of a single particle in a structured quasi-1D enclosure
�14–16�. We have shown how the reduction of the full space
to 1D longitudinal space can be carried out in conjunction
with a reduction of solution space, equivalent to the elimina-
tion of transients �or loss of memory�, resulting in a self-
consistent low resolution 1D dynamics �16�. The explicit na-
ture of the desired reduction in the many-particle case is not
obvious, and here we will restrict our attention to a large
class of initial conditions for which a reasonable transient
elimination process can be carried out.

The basic information that we take as given is that of the
stochastic sojourn of a single noninteracting particle in its
environment, i.e.,

p0�x,t;y,0� �1.1�

is the probability density that a given particle is both: located
at y at time 0 and at x at time t. From the viewpoint of
Brownian motion or any of its extensions, this is perfectly
well defined. In the context of pure inertial dynamics, this is

not the case, since the initial velocity of the particle must be
specified as well, and if distributed, should be regarded as
quenched in any averaging process. The key to the solution
of the multiparticle stochastic dynamics is the tacit assump-
tion that there is no distinction between a pair of untagged
point particles colliding, or passing through each other. This
is literally true in systems of identical particles for inertial
dynamics, or for Brownian dynamics with infinitesimal
jumps, but corresponds to a specific assumption on the jump
mechanism in the context of finite jumps. If this assumption
is made, then since the order of hard tagged particles is in-
variant, we need only a formalism for identifying the jth
particle, in order, and this is no problem.

Our conclusion will be that since the time scales of the
mean particle dynamics of an isolated particle, and of one in
an interacting system, are qualitatively separated, we can de-
fine a quasisteady state of tagged particle dynamics once
local transients have disappeared. In this state, irrespective of
the spatial nonuniformity of the equilibrium fluid we are
dealing with, the particle self-dynamics takes on a stretched
Markov form.

Our paper is organized as follows: In Sec. II, we present
the generalized procedure for transforming the dynamics of a
single untagged particle �expressed by definition �1.1�� to the
self-dynamics of the particle, when immersed in the system
of identical impenetrable particles. This transformation rep-
resents a kind of dimensional reduction, from the space of
coordinates of all particles to the space of only the tagged
particle. The results are formulas for the density and current
density of the tagged particle conditioned on its initial loca-
tion.

Section III is introducing “stretched” space-time coordi-
nates F, Q and corresponding density and current density in
this representation. The self-dynamics expressed in these co-
ordinates appears to be very transparent and formally inde-
pendent of the original dynamics of the untagged particle.

In Sec. IV we investigate properties of the stretched co-
ordinates as functions of real time and space for two repre-
sentative models of the single particle dynamics: pure iner-
tial motion and diffusion. Our aim is to demonstrate that �at
least� in these models, our surmises concerning the stretched
�time� coordinate Q in the limit of large time, used in the
definition of the “stretched” space-time, are satisfied.

In the final sections, we discuss the Markov nature of the
self-dynamics, if studied in stretched coordinates, and its re-
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lation to the corresponding picture in real space-time, de-
scribed by the Boltzmann equation for the inertial dynamics.

II. BASIC SELF-DYNAMICS

We will focus on

p�x,t;y,0� , �2.1�

the probability density that a specified tagged particle both
starts at �y ,0� and propagates to �x , t�. Our system consists of
N particles �xk�t��, on a line of length L, and we will be
interested in a suitable thermodynamic limit, consistent with
any spatial inhomogeneity built into �1.1�. Since the number
of particles to the right of point x is given by �k��xk�t�−x�,
where � is the Heaviside unit step function �and the value of
��0� is irrelevant� insertion of the Kronecker � function
�Kr(� j��xj�t�−x�−�k��xk�0�−y�) imposes the condition
that there are the same number of particles to the right of x at
time t as there are to the right of y at time 0. Thus, in terms
of the noninteracting trajectories �xk�t�� �and a Fourier rep-
resentation of �Kr�, we can follow a tagged particle, one of
the N in the system, by evaluating

p�x,t;y,0� =
1

2�N
�

−�

�

d�	�
j,k

��xj�t� − x���xk�0� − y�

� exp
i���
l

��xl�t� − x�

− �
m

��xm�0� − y��
� , �2.2�

� � means averaging over the probability
�ip0�xi�t� , t ;xi�0� ,0�.

Now we observe that exp�i����−x��=1+ �ei�−1�
���−x�, so that

�

�x
exp�i���� − x�� = �1 − ei����� − x� . �2.3�

Hence, on inserting a constant so that the �principal part or
real part� integral converges and limits can be interchanged,
we have

p�x,t;y,0� =
�2

�x � y

1

4�N
�

−�

� 	exp
i���
j

��xj�t� − x�

− �
j

��xj�0� − y��
 − 1� d�

�1 − cos ��
. �2.4�

But if we adopt initial conditions such that the �xj�0�� are
independent and identically distributed, then this will hold
for the �xj�t�� as well, and �2.4� separates at once into

p�x,t;y,0� =
�2

�x � y

1

4�N
�

−�

�

��exp i�„��X�t� − x�

− ��Y�t� − y�…�N − 1�
d�

�1 − cos ��
. �2.5�

We want to take the N→� limit of �2.5�. For this purpose,
we first write

p0�x,t;y,0� = p0�x,t�y,0�p0�y,0� , �2.6�

and similarly for the fully interacting p�x , t ;y ,0�, where
p0�y ,0� is the probability density for a particle to be at y at
time t=0, and p0�x , t �y ,0� the associated conditional prob-
ability at �x , t�. For N particles, the corresponding particle
density is

n0�y,0� = Np0�y,0� . �2.7�

Then, since

ei����a�−��b�� = 1 + �ei� − 1���a���− b�

+ �e−i� − 1���− a���b� , �2.8�

it follows that

�ei�„��X�t�−x�−��X�0�−y�…�

= 1 +
1

N
� � dXdYn0�Y,0�p0�X,t�Y,0�

���ei� − 1���X − x���y − Y�

+ �e−i� − 1���x − X���Y − y�� . �2.9�

We can now indeed take the N→� limit in �2.5�,

p�x,t�y,0� =
1

n0�y,0�
�2

�x � y

1

4�
�

−�

� d�

1 − cos �

�
exp��ei� − 1��
−�

y

dY�
x

�

dXn0�Y,0�

�p0�X,t�Y,0� + �e−i� − 1��
y

�

dY�
−�

x

dXn0�Y,0�

�p0�X,t�Y,0�� − 1
 . �2.10�

If we define

Q�x,t;y,0� = ��
−�

x

dX�
y

�

dY + �
x

�

dX�
−�

y

dY�n0�X,t;Y,0� ,

W�x,t;y,0� = ��
−�

x

dX�
y

�

dY − �
x

�

dX�
−�

y

dY�n0�X,t;Y,0� ,

�2.11�

and introduce the density n�x , t ;y ,0� as in �2.7�, we end up
with the concise form

n�x,t;y,0� =
�2

�x � y

1

4�
�

−�

�

„exp�Q�x,t;y,0��cos � − 1�

− iW�x,t;y,0�sin �� − 1…
d�

1 − cos �
. �2.12�

The current density corresponding to �2.12� is just as eas-
ily obtained. We need only replace � j,k��xj�t�−x���xk�0�
−y� in �2.2� by � j,kẋj�t���xj�t�−x���xk�0�−y�, and corre-
spondingly replace �2.3� by
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�

�t
exp„i�����t� − x�… = − �1 − ei���̇�t�����t� − x� .

�2.13�

This results at once in

j�x,t;y,0� = −
�2

�t � y

1

4�
�

−�

�

„exp�Q�x,t;y,0��cos � − 1�

− iW�x,t;y,0�sin �� − 1…
d�

1 − cos �
, �2.14�

and of course the conservation equation

�

�t
n�x,t;y,0� +

�

�x
j�x,t;y,0� = 0 �2.15�

is immediately verified. An alternative representation is in
terms of the cumulative density B�x , t ;y ,0�,

n�x,t;y,0� =
�

�x
B�x,t;y,0� ,

j�x,t;y,0� = −
�

�t
B�x,t;y,0� , �2.16�

where

B�x,t;y,0� =
�

�y

1

4�
�

−�

�

„exp�Q�x,t;y,0��cos � − 1�

− iW�x,t;y,0�sin �� − 1… . �2.17�

III. STRETCHED COORDINATE SELF-DYNAMICS

Observing that �−�
x dX�y

�dY −�x
�dX�−�

y dY =�−�
x dX�−�

� dY
−�−�

� dX �−�
y dY =�−�

� dX�y
�dY −�x

�dX�−�
� dY, with due atten-

tion to the limits ±�, we can rewrite W in �2.11� as

W�x,t;y,0� = �
−�

x

n0�X,t�dX − �
−�

y

n0�Y,0�dY

= − �
x

�

n0�X,t�dX + �
y

�

n0�Y,0�dY . �3.1�

Any average of the expressions in �3.1� is equally valid, but
if the system has the same left and right limiting densities,
the equal weight average

W�x,t;y,0� = F0�x,t� − F0�y,0� ,

where

F0�x,t� =
1

2
�

−�

�

sgn�x − X�n0�X,t�dX �3.2�

is easiest to manipulate on an infinite domain. In all cases,
discretion is called for in taking the limits. However, what
really matters is that

�

�x
F0�x,t� = n0�x,t� . �3.3�

For the purposes of this initial study, we will assume that
our �untagged� many-particle system is in steady state, so
that �3.2� reduces to

W�x,t;y,0� = F0�x� − F0�y� , �3.4�

in obvious notation. The form of Q�x , t ;y ,0� requires more
detailed investigation, but as a tentative guess, to be verified
in the sequel, we adopt the assumption that in the large-time
limit,

Q�x,t;y,0� = Q�t� �3.5�

depends only upon time. To the extent that �3.4� and �3.5� are
valid, significant conclusions can be drawn. We introduce the
“stretched” variables

Q�t� = Q, F0�x� = F, F0�y� = F�, �3.6�

and the conditional density and current density

n�x,t�y,0� = n�x,t;y,0�/n0�y,0� ,

j�x,t�y,0� = j�x,t;y,0�/n0�y,0� , �3.7�

as well as those normalized by their noninteracting images,

g�F,Q�F�� = n�x,t�y,0�/n0�x� ,

k�F,Q�F�� = j�x,t�y,0�/Q̇�t� . �3.8�

Equations �2.12� and �2.14� then translate to the universal
dynamics and environment independent equations

g�F,Q�F��

=
�2

�F � F�
�

−�

�

�e�cos �−1�Q−i sin � �F−F�� − 1�
d�/4�

1 − cos �

=
1

4�
�

−�

�

�1 + cos ��e�cos �−1�Q−i sin � �F−F��d� , �3.9�

k�F,Q�F��

= −
�2

�Q � F�
�

−�

�

�e�cos �−1�Q−i sin � �F−F�� − 1�
d�/4�

1 − cos �

=
1

4�
�

−�

�

i sin �e�cos �−1�Q−i sin � �F−F��d� . �3.10�

The integrations in �3.9� and �3.10� are routine, and are
derivable at once from the well known equation

1

2�
�

−�

�

ein�+Q cos �−iW sin �d� = �Q + W

Q − W
�n/2

In��Q2 − W2� ,

�3.11�

where In is the nth order modified Bessel function and n is an
integer. Hence,

g =
1

2
e−Q�I0��Q2 − W2� +

Q
�Q2 − W2

I1��Q2 − W2�� ,
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k =
W

2�Q2 − W2
e−QI1��Q2 − W2� . �3.12�

The “stretched” density g and the current density k �3.12� are
well defined for �W � = �F−F� � 	Q. This restriction comes
from the initial value of Q�x , t ;y ,0� at time t=0,

Q�x,0;y,0� = �
min�x,y�

max�x,y�

n0���d� = �F − F�� , �3.13�

which can be easily verified using the relation inverse to
�2.11�,

n0�x,t;y,0� = −
1

2

�2

�x � y
Q�x,t;y,0� . �3.14�

If applied on Q�x ,0 ;y ,0� of �3.13�,

−
1

2

�2

�x � y
�F0�x� − F0�y�� =

1

2

�

�x
�sgn�x − y�

�F0�y�
�y

�
= ��x − y�n0�y� , �3.15�

which is n0�x , t ;y ,0� at t=0 for any dynamics of the un-
tagged particles. For increasing t
0, the function
Q�x , t ;y ,0� at a fixed W also increases, satisfying according
to �2.11� the condition �W � �Q �see Fig. 1�.

In the limit of large time t, which is of our main interest,
Q is also large, and g and k according to �3.12� are negli-
gible, except in the region �W � �Q. Here the asymptotic
expansion of the Bessel functions can be used, giving

g � e−QI0��Q2 − W2� �
1

�2�Q
e−W2/2Q. �3.16�

Using simple algebra in �3.9� and �3.10�, one can show
that the stretched density g and the corresponding current
density k satisfy not only the “mass flow” conservation equa-
tion

�g

�Q
+

�k

�F
= 0, �3.17�

but also the “momentum flow” dynamics

�k

�Q
+

�g

�F
= − 2k , �3.18�

with the initial conditions

g�F,Q�F�� =
Q + 2

4
e−Q, k�F,Q�F�� =

W

4
e−Q, �3.19�

for Q= �W � = �F−F��, corresponding to the limits of �3.12� at
t=0.

Note that �3.17� and �3.18� combine to read

2
�g

�Q
+

�2g

�Q2 −
�2g

�F2 = 0, �3.20�

the familiar “telegrapher’s equation” of transmission line
theory. �The same holds also for k.� In the short stretched-
time period of rapid change, �2g /�Q2 dominates over �g /�Q,
so that

�2g

�Q2 =
�2g

�F2 , �3.21�

a constant stretched velocity wave front propagating at
�dF /dQ � =1. But in the high Q asymptotic region, �g /�Q
dominates, and

2
�g

�Q
=

�2g

�F2 , �3.22�

a simple diffusion equation with diffusion constant 1 /2, is
satisfied by the asymptotic relation �3.16�. Of course, this
behavior is also obtainable from the explicit �3.9�.

The assertion that Q�x , t ;y ,0�=Q�t� is a function of time
alone is an approximation or at best a limit, and so it is
instructive to see its genesis in a simple solvable model.
Consider then a point particle system under inertial dynam-
ics, in equilibrium, at density n0, with no external field. Since
the velocity distribution cannot change under collision, we
choose to restrict velocities to v= ±c, equally occupied. The
distribution of an arbitrary particle at velocity v has the dy-
namics

nv�x,t;y,0� = 1
2n0��x − y − vt� , �3.23�

or averaging over the two values of v,

n0�x,t;y,0� = 1
2n0���x − y − ct� + ��x − y + ct�� .

�3.24�

If follows from �2.11� that

Q�x,t;y,0� = n0 max��x − y�,ct� . �3.25�

Anticipating, from �3.16�, that self-dynamics in the interact-
ing system will be diffusive, with �x−y � ��t, Eq. �3.25� then
reduces to Q�x , t ;y ,0�=n0ct, the form desired. Note too, that

under these circumstances, Q̇=n0c, F0�x�−F0�y�=n0�x−y�,
so that n�x , t ;y ,0� and j�x , t ;y ,0� of a tagged particle satisfy

�4 �2 2 4

1

2

3

4

5

6

Q

W

Q��W� Q��W�

Dt�13

Dt�5

Dt�1
ct�2

ct�4

FIG. 1. Function Q depending on W=n0�x−y�; here n0=1. Q
= �W� is the lower bound of Q, corresponding to Q�t=0� for any
dynamics of the noninteracting particles. The full lines correspond
to diffusion, Eq. �4.17�, and the dashed lines are Q for the toy
model of particles moving only with the velocities v= ±c, formula
�3.25�.
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�n

�t
+

� j

�x
= 0,

� j

�t
+ c2�n

�x
= − 2n0cj , �3.26�

precisely �3.17� and �3.18�, to within scaling.

IV. QUASISTEADY SELF-DYNAMICS

Now we must attend to the condition of validity of the
stretched space-time description. From our discussion in the
preceding paragraph, this will not hold until sufficient
memory of the initial state �e.g., the �x−y� term in �3.25�� has
been lost, and so corresponds to a transient-reduced or qua-
sisteady state. The precise definition of this situation is not
obvious, but will become so as we specify the dynamics
more explicitly. The determination of the crucial Q�x ,y , t�
=Q�x , t ;y ,0� is in principle no problem at all, since only the
stochastic dynamics of an isolated particle is to be examined.
The model of a particle in a fixed external field ��x� under
�Gaussian� white noise f�t�, coupled with a linear dissipation
mechanism driving the system to thermal equilibrium at re-
ciprocal temperature 
, or to steady flow, is widely used and
will be used here as well. We thus have the Langevin dynam-
ics

mv̇ + �v = − ���x� + f�t� ,

ẋ = v, �f�t�� = 0, �f�t�f�t��� = 2A2��t − t�� , �4.1�

giving rise to the Fokker-Planck �or Kramers� equation for
the one-particle probability density, normalized to N par-
ticles,

ṅ0�x,v,t� + vn0��x,v,t� −
1

m
���x�

�

�v
n0�x,v,t�

= D
�

�v
�m
v +

�

�v
�n0�x,v,t� ,

n0�x,v,0� = n0�x���x − y��m
/2�e−m
v2/2, �4.2�

where D=A2 /m2, 
=� /A2.
Let us confine our attention to two extremes of �4.2� since

they exemplify rather different situations. One extreme is
that of D=0, purely inertial motion, so that the unmodified
Liouville equation

ṅ0�x,v,t� + vn0��x,v,t� −
1

m
���x�

�

�v
n0�x,v,t� = 0,

n0�x,v,0� = n0�x���x − y��m
/2�e−m
v2/2, �4.3�

is relevant. To find the desired n0�x , t�, we must as in �3.23�
first find n0�x ,v , t� and then integrate over v. It is simplest to
make a direct average over trajectories. Specializing to the
case of no net flow, the equilibrium distribution will be the
canonical

n0�x,v� =
N

Z
e−
E�x,v�, �4.4�

where E�x ,v�=mv2 /2+��x�, Z=��e−
E�x,v�dxdv.

Suppose we denote by X��y ,E�y ,v� , t� the pair of values
��=sgn v� of x�t� under inertial dynamics starting at x�0�
=y with energy E�y ,v� where v=v�0�. Then

n0�x,t;y,0� =
N

Z
�
�
� � �„X��Y,E�Y,v�,t� − x…

���Y − y�e−
E�Y,v�dYdv . �4.5�

Since �E /�v=mv, we next transform from v to E,

n0�x,t;y,0� =
N

mZ
�
�
� � ��X��Y,E,t� − x�

���Y − y�e−
EdYdE/vE�Y� , �4.6�

where vE�x�=�2�E−��x�� /m. One more transformation: de-
fine T��x ,y ,E� as the time of travel from y to x at energy E,
� indicating the �th route as one allows �= ±1 as well as
various numbers of reflections if E is lower than �max.
Hence,

T��x,y,E� = �
y���

x dz

vE�z�
, �4.7�

where ��� denotes the �th trajectory from y to x. The impor-
tant property of T��x ,y ,E� is that

��T��x,y,E�/�x� = 1/vE�x� ,

��T��x,y,E�/�y� = 1/vE�y� , �4.8�

so that we can rewrite �4.6� as

n0�x,t;y,0� =
N

mZ
�
�
� ��T��x,y,E� − t�e−
EdE/�vE�x�vE�y�� ,

�4.9�

from which

ṅ0�x,t;y,0� =
N

mZ
�
�
� ���t − T��x,y,E��

�e−
EdE/�vE�x�vE�y�� . �4.10�

Then, taking advantage of �4.8� once more, using �2.11�, we
conclude that

Q̇�x,y,t� =
2N

mZ
�
�
� ��t − T��x,y,E��e−
EdE �4.11�

or, defining E��x ,y , t� as the energy needed to traverse y to x
along path � in time t, that

Q̇�x,y,t� =
2N

mZ
�
�
� ��E − E��x,y,t��e−
EdE

=
2N


mZ
�
�

e−
E��x,y,t�. �4.12�

The consequences of �4.12� are clear. If y and x are not in
a common trough of the potential �, they can be connected
by a trajectory only if E
�max, in which case there is only
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one trajectory. But then, large transit time can only be
achieved if E→�max, and so we conclude that

Q̇�x,y,t� →
2N


mZ
e−
�max, �4.13�

which is independent of x and y.
We next turn to the other extreme of the Fokker-Planck

equation, the highly overdamped pure diffusion in which in-
ertia can be neglected, e.g., by taking m=0. Carrying this out
in �4.2� is a bit delicate, but not so in �4.1�, which can be
written simply as

�ẋ = − ���x� + f�t� , �4.14�

leading directly to the forced diffusion

ṅ0�x,t;y,0� = Dn0��x,t;y,0� + D
�

�x
�
���x�n0�x,t;y,0�� ,

n0�x,t;y,0� = n0�x���x − y� . �4.15�

Making use of �3.14�, Eq. �4.15� can be converted to the
more direct

1

D
Q̇�x,y,t� = e−
��x� �

�x
e
��x� �

�x
Q�x,y,t� ,

Q�x,y,0� = �W�x,y�� = �F0�x� − F0�y�� . �4.16�

Equation �4.16� is best understood by first dropping the
external field ��x�, so that correspondingly W�x ,y�=n0�x
−y�. We then have the immediate solution

Q�x,y,t� = n0
�x − y�Erf� x − y

2�Dt
� + 2�Dt/�e−�x − y�2/4Dt
 ,

where

Erf�z� =
2

��
�

0

z

e−�2
d� , �4.17�

divided into one term representing the decay of the initial
isolated particle distribution, and one term representing the
diffusive “filling-in” of the distribution. Suppose now that
�x−y�2 /4Dt�1, which is certainly the case for the resulting
fluid, where we know that the distribution has a range scaling
as �x−y � / t1/4. Then �4.17� can be expanded in a t1/2 Laurent
series starting as

Q�x,y,t� =
2

��
n0�Dt�1/2 +

1

2��
n0�x − y�2�Dt�−1/2 + ¯ ,

�4.18�

with a second to first term ratio of ��x−y�2 / t.
We expect the general qualitative form not to change un-

der the imposition of an external field. Here, it is perhaps
more illuminating to switch from x and y to the stretched
F=F0�x�, F�=F0�y�. Since dF /dx=n0�x�= ñ0�F� and
n0�x�e
��x�=const, we have from �4.16�,

1

D
Q̇ = n0�x�

dF

dx

�

�F

1

n0�x�
dF

dx

�

�F
Q = ñ0

2�F�
�2Q

�F2 . �4.19�

Now, supposing the expansion

Q�F,F�,t� = a0�F,F���Dt�1/2 + a1�F,F���Dt�−1/2 + ¯ ,

�4.20�

substituting into �4.19�, and equating coefficients of �Dt�1/2,
�Dt�−1/2, etc., results in

ñ0
2�F�

�2

�F2a0 = 0,

ñ0
2�F�

�2

�F2a1 = a0/2, �4.21�

. . . .

The solution for the leading term is

a0�F,F�� = K�F�� + K��F��F = K0 + K1�F + F�� + K2FF�,

�4.22�

if the symmetry Q�x ,y , t�=Q�y ,x , t� is taken into account.
Because we deal with an infinite system with bounded po-
tential ��x�, the stretched coordinates F, F� are unbounded
over the interval �−� , � �, and the constants K1 and K2 must
be zero. The leading term ��Dt�1/2, determining the
asymptotic behavior of Q�F ,F� , t� for large t does not de-
pend algebraically on F and F�. In the case of zero potential,
K0=2n0 /��, otherwise we determine this constant from
�4.19�, rewritten in the form

� �

�t
− D�2 �2

�F2�Q�F,F�,t� = �F − F����t�

+ D�ñ0
2�F� − �2�

�2

�F2Q�F,F�,t� ,

�4.23�

enabling us to use a perturbation approach. Here, � repre-
sents a constant, which is then to be fixed by the following
consideration.

The zeroth order of Q includes only the response to im-
posing the initial condition

Q0�F,F�,t� =� G0�F,t;F1,t����t���F1 − F��dF1dt�

= 2��Dt

�
e−�F − F��2/4D�2t + �F − F��Erf�F − F�

2��Dt
� ,

�4.24�

where

G0�F,t;F�t�� =
��t − t��

2���D�t − t��
e−�F − F��2/4D�2�t−t��

�4.25�

is the Green function of the left-hand side operator in �4.23�.
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Q0 is of the same form as �4.17� for the particles in zero
potential, with the stretched coordinates F, F� instead of x, y
and with the diffusion constant D rescaled by the factor �2.
The leading term ��Dt�1/2 again comes from the exponential
function in �4.24�,

K0 = 2�/�� . �4.26�

This value includes all the contributions ��Dt�1/2, if the per-
turbation corrections

D�
0

t

dt�� G0�F,t;F1,t���ñ0
2�F1� − �2�

�2

�F1
2Q�F1,F�,t��dF1

�4.27�

quench in the limit t→�. This is the condition, which fixes
�. Taking only the first-order correction

Q1 = D�
0

t

dt�� dF1G0�F,t;F1,t���ñ0
2�F1� − �2�

�
�2

�F1
2Q0�F1,F�,t��

= �
0

t

dt�� dF1
�ñ0

2�F1� − �2�

2��2�t��t − t��

�e−�F − F1�2/4D�2�t−t��−�F1 − F��2/4D�2t�

→
1

2�2 � �ñ0
2�F1� − �2�dF1 �4.28�

in the limit t→�, so the condition Q1�t→ � �=0 yields

�2 = �� ñ0
2�F�dF���� dF�

= �� n0
3�x�dx���� n0�x�dx�; �4.29�

in the lowest order of perturbation, �2 is the averaged ñ0
2�F�

over the range of the stretched coordinate F.

V. DISCUSSION

In the domain of validity of the Q�t�, F0�x�, F0�y� descrip-
tion, the function Q�t� also has direct physical meaning for
self-motion in the interacting system. One question we might
ask is that of the time dependence of the mean square tagged
particle displacement, weighted by the probability of its ini-
tial location,

���x�t��2� =� p0�y�dy� �x − y�2p�x,t�y,0�dx . �5.1�

But let us instead examine the stretched time dependence of
the squared stretched displacement,

�„�F0�x�t��…2� =� � �F0�x� − F0�y��2n�x,t;y,0�dxdy/N

=� � �F0�x� − F0�y��2n�x,t;y,0�

�
dF0�x�dF0�y�
Nn0�x�n0�y�

=� � �F − F��2g�F,Q�F��dFdF�/N , �5.2�

in the notation of �3.8�. Hence

�

�Q
���F0�x�t���2�

= −� � �F − F��2 �2

�F � F�

��
−�

� d�

4�N
e�cos �−1�Q−i�F−F��sin �dFdF�

=� � �
−�

� d�

2�N
e�cos �−1�Q+i�F�−F�sin �dFdF�

=� �
−�

�

e�cos �−1�Q+iF� sin �����d�dF�/N = 1.

�5.3�

Thus, to within an additive constant, Q is precisely
�(�F0�x�t��)2�.

In the case of periodic potentials of period �, when
��x−y�2� becomes much larger than �2 in the large-time
limit, we can approximate F0�x�−F0�y� by �n0��x−y� with
the equilibrium density �n0� averaged over �; hence

�

�t
��F0�x� − F0�y��2� = Q̇

�

�Q
��F0�x� − F0�y��2�

= Q̇ � �n0�2 �

�t
��x − y�2� . �5.4�

This result explains subdiffusion observed in the systems
of one-dimensional �1D� hard-point particles in a specific
way: In real space-time, the asymptotic evolution of the
mean squared displacement ��x�t�−x�0��2�� t� is influenced
by the original dynamics of noninteracting particles, which is

involved in Q̇ in �5.4�. It gives rise also to ��1, e.g., for
diffusion, Q��t, hence �=1/2. On the other hand, in
stretched coordinates, the evolution of the mean squared dis-
placement ��F−F��2� is asymptotically proportional to the
stretched time Q, not depending on the original dynamics of
the noninteracting particles. This expresses the effect of
dominating collisions of particles in the large time limit—
and in stretched space-time, there is no subdiffusion, but in-
stead standard diffusion. Subdiffusion in real space can be
then understood as a result of the nonlinear transformation
from the stretched to the real coordinates, which is specific
for each dynamics of the noninteracting particles.
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Now, we focus on the relevant dynamical equations of our
system in real �x , t� space. It is only necessary to rewrite their
stretched space-time version �3.18�, �3.19� for density and
current density in physical space-time. We have

�

�t
n�x,t;y,0� = n0�x�n0�y�

�

�t
g�x,t;y,0�

= n0�x�n0�y�Q̇�t�
�

�Q
g�F,Q�F��

= − n0�x�n0�y�Q̇�t�
�

�F
k�F,Q�F��

= − n0�y�Q̇�t�
�

�x
k�F,Q�F�� = −

�

�x
j�x,t;y,0� ,

�5.5�

just the expected mass conservation. Then, for momentum
conservation,

�

�t
j�x,t;y,0� = n0�y�

�

�t
�Q̇�t�k�x,t;y,0��

= Q̈�t�n0�y�k�x,t;y,0� + Q̇�t�n0�y�
�

�t
k�x,t;y,0�

= �Q̈�t�/Q̇�t��j�x,t;y,0�

+ Q̇2�t�n0�y�
�

�Q
k�F,Q�F��

= �Q̈�t�/Q̇�t��j�x,t;y,0� − Q̇2�t�n0�y�

��2k�F,Q�F�� +
�

�F
g�F,Q�F���

= � Q̈�t�

Q̇�t�
− 2Q̇�t�� j�x,t;y,0�

−
Q̇2�t�
n0�x�

�

�x

n�x,t;y,0�
n0�x�

. �5.6�

Dropping implicit arguments, and observing that n0� /n0
=−
��, physical space-time dynamics now reads

�n

�t
+

� j

�x
= 0,

� j

�t
+ � Q̇

n0
�2

�n

�x
= � Q̈

Q̇
− 2Q̇� j − 
��� Q̇

n0
�2

n . �5.7�

It would be more than a bit valuable if we could find a
simple physical approximation that gives rise to �5.7� with-
out first obtaining the exact solution, for this could then be
extrapolated to other than point cores on a line. As a hydro-
dynamic model, �5.7� is unusual, and so it is not clear how
one would do this. For example, a first attempt for inertial
dynamics would often take the form of a suitable Boltzmann
equation. Here, this is particularly simple: we can imagine
that we have an ideal gas fluid of phase-space density

f�x ,v , t�=n0�x�h0�v�. One particle is tagged, with a �self-�
phase-space density fs�x ,v , t� for the tag, and anytime that a
tagged particle passes a fluid particle, the tag is transferred to
the latter. Ignoring correlations �mean field� and tallying the
rates of production and destruction of a tag moving at veloc-
ity v, we clearly have the augmented Liouville equation �the
self-self collision term fs�x ,v , t�fs�x ,v� , t� cancels�

�

�t
fs�x,v,t� + v

�

�x
fs�x,v,t� −

1

m
���x�

�

�v
fs�x,v,t�

=� �v − v���fs�x,v�,t�f�x,v,t� − fs�x,v,t�f�x,v�,t��dv�

= n0�x� � �v − v���h0�v�fs�x,v�,t� − h0�v��fs�x,v,t��dv�.

�5.8�

Define

ns�x,t� =� fs�x,v,t�dv, js�x,t� =� vfs�x,v,t�dv .

�5.9�

Then, integrating �5.8� over v gives us

�

�t
ns�x,t� +

�

�x
js�x,t� = 0, �5.10�

as expected, while multiplying by v and integrating over v
yields

�

�t
js�x,t� +

�

�x
� v2fs�x,v,t�dv

=
1

m
���x�ns�x,t�

+ n0�x� � �� �v − v���v − v��h0�v�dv� fs�x,v�,t�dv�.

�5.11�

If we set

v2�x,t� = �� v2fs�x,v,t�dv���� fs�x,v,t�dv� ,

�5.12�

�5.11� can be also written as

�

�t
js�x,t� + v2�x,t�

�

�x
ns�x,t�dv

= � 1

m
���x� −

�

�x
�v2�x,t���ns�x,t�

+ n0�x� � �� �v − v���v − v��h0�v�dv� fs�x,v�,t�dv�,

�5.13�

very much in the form of �5.7�. The simplest model with
only two velocities v= ±c, introduced in Sec. III, exhibits
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exact correspondence between both descriptions. For zero
potential, ��x�=0, also n0�x�=n0 and v2�x , t�= �v2� are con-
stant, and the distribution of velocities

h0�v� = 1
2 ���v − c� + ��v + c�� , �5.14�

corresponding to �3.23�, enables us to express fs�x ,v , t� from
Eqs. �5.9� as

fs�x,v,t� = 1
2 ���v − c� + ��v + c���ns�x,t� +

1

v
js�x,t�� .

�5.15�

Substituting for �5.13�, we recover

�

�t
js�x,t� + c2 �

�x
ns�x,t� = − 2n0cjs�x,t� , �5.16�

which is exactly Eq. �3.26�, the form of the space-time dy-
namics �5.7� for this simple model.

For the general distribution function h0�v�=h0�−v� and
zero potential �, Q is calculated explicitly from �2.11�,

Q�x,t;y,0� = 2n0��x − y��
0

�x−y�/t

h0�v�dv

+ �
�x−y�/t

�

vth0�v�dv� , �5.17�

so its time derivatives are

Q̇ = 2n0�
�x−y�/t

�

vh0�v�dv and Q̈ = 2n0
�x − y�2

t3 h0� x − y

t
� .

�5.18�

For a fixed �x−y�2 / t and t→�, Q̈ quenches and Q̇ /n0 ap-
proaches the mean absolute velocity ��v � �, corresponding ex-
actly to the result �4.13� for the canonical equilibrium distri-
bution �4.4�. So the coefficient at �n /�x is ��v � �2 in Eqs.
�5.7�, instead of �v2� �5.12�, as it comes out from the Boltz-
mann equation. Similar problems appear in comparison with

−2Q̇j in �5.7� with the collision integral on the right-hand
side of �5.13�.

The Boltzmann equation gives a coarse picture, which is
helpful to interpret the real space self-dynamics, expressed
by Eqs. �5.7�. However, a detailed correspondence, and the
region of validity, of the mean field assumption, remain to be
established.

VI. CONCLUSION

Our investigation of 1D systems of hard-point �impen-
etrable� particles, colliding elastically with their nearest
neighbors, can be summarized as follows:

If the dynamics of a single noninteracting particle, ex-
pressed by the probability density p0�x , t ;y ,0� �1.1�, is

known, the probability density p�x , t ;y ,0� �2.1� of a tagged
particle, interacting with its neighbors, is calculable by the
formula �2.10�, a sort of rather complicated nonlinear trans-
formation p0→p. This transformation supposes that the sys-
tem is thermalized, and the density of anonymous neighbors
does not depend on time, i.e., the transients are quenched.
Then the transformation can be understood as a dimensional
reduction of the full space of solutions of the many-particle
dynamics onto the dynamics of only the tagged particle.

To understand the dynamics of the tagged particle in a
more transparent way, we defined new “stretched” variables
F, F�, and Q, connected with the physical coordinates x, y,
and t by the nonlinear transformation �3.2� and �2.11�. While
F, F� replaces the spatial coordinates, Q appears to depend
on time alone in the limit t→� for infinite systems, i.e., F,
F�� �−� , � �, as we have shown for both inertial and diffu-
sion dynamics of the isolated particles. In the stretched co-
ordinates, the dynamics of the tagged particle can be ex-
pressed as simple differential equations �3.17� and �3.18� for
the stretched density g and the current density k. If com-
bined, they yield Eq. �3.20�, the classical telegrapher’s equa-
tion.

The dynamics of the tagged particle is universal in the
stretched coordinates; it does not depend explicitly on the
original dynamics of the single noninteracting particle p0,
which is effectively hidden only in the type of the nonlinear
transformation between the stretched and real space-time co-
ordinates. In the limit of large time, the stretched density
evolves according to standard diffusion in the stretched co-
ordinates F, F� and the stretched time Q, with the mean
square stretched displacement obeying the classical Einstein
formula ��F−F��2��Q. Thus, the subdiffusion observed in
real space-time appears as a result of the nonlinear transfor-
mation from the stretched coordinates back to real space.

Finally, Eqs. �3.17� and �3.18� for the stretched density g
and current density k, transformed to real space-time, give
rise to the mass conservation law and the momentum conser-
vation equation �5.7�, involving corresponding collisions of
the tagged particle with both of its neighbors. They play a
dominant role in the limit of large time.

Our theory is based on the assumption that the colliding
hard-point particles can be described as two noninteracting
particles, exchanging only their labels �or tags�. This is valid
only for one-component systems in the form presented. Ex-
tension to mixtures with common dynamical parameters
�mass in the inertial case, diffusivity in the diffusive case� is
relatively simple, and will be reported in a future presenta-
tion. The unequal parameter case is significantly more diffi-
cult.
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